= pd.read_csv(DATA_PATH / "nes.txt", delimiter=" ")
nes nes.head()
year | resid | weight1 | weight2 | weight3 | age | gender | race | educ1 | urban | ... | parent_party | white | year_new | income_new | age_new | vote.1 | age_discrete | race_adj | dvote | rvote | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
536 | 1952 | 1 | 1.0 | 1.0 | 1.0 | 25 | 2 | 1 | 2 | 2.0 | ... | 2.0 | 1 | 1 | 1 | -2.052455 | 1.0 | 1 | 1.0 | 0.0 | 1.0 |
537 | 1952 | 2 | 1.0 | 1.0 | 1.0 | 33 | 2 | 1 | 1 | 2.0 | ... | 0.0 | 1 | 1 | 1 | -1.252455 | 1.0 | 2 | 1.0 | 1.0 | 0.0 |
538 | 1952 | 3 | 1.0 | 1.0 | 1.0 | 26 | 2 | 1 | 2 | 2.0 | ... | -2.0 | 1 | 1 | 0 | -1.952455 | 1.0 | 1 | 1.0 | 0.0 | 1.0 |
539 | 1952 | 4 | 1.0 | 1.0 | 1.0 | 63 | 1 | 1 | 2 | 2.0 | ... | NaN | 1 | 1 | 0 | 1.747545 | 1.0 | 3 | 1.0 | 0.0 | 1.0 |
540 | 1952 | 5 | 1.0 | 1.0 | 1.0 | 66 | 2 | 1 | 2 | 2.0 | ... | -2.0 | 1 | 1 | -2 | 2.047545 | 1.0 | 4 | 1.0 | 0.0 | 1.0 |
5 rows × 70 columns